Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate.

نویسندگان

  • Donald P Cain
  • Francis Boon
  • Michael E Corcoran
چکیده

Various studies of hippocampus and medial thalamus (MT) suggest that these brain areas play a crucial, marginal, or no essential role in spatial navigation. These divergent views were examined in experiments using electrolytic Lesions of fimbria-fornix (FF) or radiofrequency or neurotoxic Lesions of MT of rats subsequently trained to find a stable visible (experiment 1) or hidden platform (experiments 2 and 3) in a water maze (WM) pool. Rats with electrolytic Lesions of FF or radiofrequency Lesions of MT were impaired in swimming to a stable visible platform, particularly the MT Lesion Group, suggesting impairment of WM strategies acquisition. Additional Lesioned rats were then tested in a hidden platform version of the WM task. Some rats were given Morris's nonspatial pretraining prior to Lesioning to provide them with training in the required WM behavioral strategies. Nonspatially Pretrained rats with FF Lesions eventually were able to navigate to the hidden platform, but the accuracy of place responding was impaired. This impairment occurred without problems in the motoric control of swimming or the use of WM behavioral strategies, suggesting that these rats had a spatial mapping impairment. Radiofrequency MT Lesions blocked acquisition of WM behavioral strategies by Naive rats throughout 3 days of training, severely impairing performance on all aspects of the hidden platform task. Nonspatially Pretrained rats given the same MT Lesions readily learned the hidden platform location and were indistinguishable from controls throughout spatial training. Rats given neurotoxic Lesions of MT for removal of cells were only mildly impaired and improved considerably during training, suggesting an important role for fibers of passage in WM strategies learning. The results provide a clear dissociation between a role for MT in learning WM behavioral strategies and the hippocampal formation in spatial mapping and memory. This is the first identification of a brain area, MT, that is essential for learning behavioral strategies that by themselves do not constitute the solution to the task but are necessary for the successful use of an innate learning ability: place response learning using spatial mapping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice

Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...

متن کامل

Cognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior.

Learning to navigate plays an integral role in the survival of humans and other animals. Research on human navigation has largely focused on how we deliberately map out our world. However, many of us also have experiences of navigating on "autopilot" or out of habit. Animal models have identified this cognitive mapping versus habit learning as two dissociable systems for learning a space--a hip...

متن کامل

Investigating the Effect of Music on Spatial Learning in a Virtual Reality Task

Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Effects of Peripheral and Intra-hippocampal Administration of Sodium Salicylate on Spatial Learning and Memory of Rats

Objective(s) Cyclooxygenases  (COXs) are known to play some roles in physiological mechanisms related to learning and memory. Since sodium salicylate is an inhibitor of COX, we have evaluated the effect of peripheral and intra-hippocampal administration of sodium salicylate on spatial learning and memory in male rats. Materials and Methods Male rats were studied in two groups; the first grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Behavioural brain research

دوره 170 2  شماره 

صفحات  -

تاریخ انتشار 2006